当前位置:首页 > 教学资源

数学教案-二元一次方程与一次函数(精品多篇)

时间:2025-01-25 08:53:01
数学教案-二元一次方程与一次函数(精品多篇)

[概述]数学教案-二元一次方程与一次函数(精品多篇)为网友投稿推荐,但愿对你的学习工作带来帮助。

课前预习: 篇一

一、阅读教材P96-P98的内容

二、独立思考:

1、满足方程组 的x的值是-1,则方程组的解是_____________.

2、用代入法解方程组 比较容易的变形是( )、

A、由①得 B、由①得

C、由得 D、则得

3、用代入消元法解方程 以下各式正确的是( )

A、B、

C、D、

4、如果 是二元一次方程,则 的值是多少?

互动教学过程

探究一:用代入法解方程组 。

探究二:用代入法解二元一次方程组的一般步骤:

步骤 名称 具体做法 目的

1 变形 变形为

2 代入

3 求一元

4 求另一元

5 写出解

探究三:根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量(按瓶计算)比为

2:5,某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小两种产品各多少瓶?

自我能力评估

一、课堂练习

教材P98练习1、2题,P99练习第3、4题

解下列方程组

(1) (2) (3)

二、作业布置

教材P103习题8.2第1、2、4、6题。

三、自我检验

(一)填空题

1、在方程 中,若用x表示y,则y=__________________,若用y表示x,则x=____________.

2、用代入法解方程组 较简单的解法步骤为:先把方程______变为_________________,再代入方程________,求得_______的值,然后再求_________的值。

3、二元一次方程组 的解为_______________。

4、若 是方程组 的解,则m=_________,n=__________。

5、在方程 中,若x与y互为相反数,则x=_______,y=___________。

6、从方程组 中消去m,得x与y的关系式为_____________________。

7、如果方程组 的解是方程 的一个解,则m=________________。

8、用代入法解方程组 由得到用x的式子表示y是:_______________________。

(二)选择题

1、用代入法解方程组 使得代入后化简比较容易的变形是( )

A、由得 B、由得 C、由得 D、由得

2、用代入法解方程组 时,代入正确的是( )

A、B、C、D、

3、解方程组 的最佳方法是( )

A、由得 再代入 B、由得 再代入

C、由得 再代入 D、由得 再代入

4、方程 的一个解与方程组 的解相同,由m等于( )

A、4 B、3 C、2 D、1

5、如果 是方程组 的解,那 之间的关系是( )

A、B、C、D、

6、在式子 中,当 时,其值为3,当 时,其值是4,当 时,其值为( )

A、B、C、D、

7、某校八年级学生在会议室开会,若每排坐12人,则有11人无处从,若每排从14人,则余1人独从一排,则这个年级的学生总数为( )

A、133 B、144 C、155 D、166

(三)解答题

1、用代入消元法解下列方程组:

(1) (2) (3)

2、已知方程组 的解中x与y互为相反数,求m的值。

3、已知方程组 的解是方程 的一个解,求a的值。

4、已知方程组 与方程组 有相同的解,求a、b的值。

5、解下列方程组的过程中,是否有错误,如有错误,请指出来。

解方程组

解:由①得

把代入中,

y是任意数

x是任意数

因此方程组有无数个解

6、若 求 的值。

7、一个两位数,十位上的数字比个位数字大2,若将十位数了和个位数字交换位置,所得的数比原数的 多3,求这个两位数。

8、甲、乙两人同解方程组 ,甲正确解得 ,乙因抄错C,解得 ,求A、B、C的值。

9、已知等式 对于一切数都成立,求A、B的值。

10、根据有关信息求解:

(1)根据图中给出的信息,求每件T恤衫和每

瓶矿泉水的价格。

(2)用八块相同的长方形地砖拼成了一个大长

方形,求每块地砖的长和宽。

二元一次方程与一次函数的教案 篇二

初中《二元一次方程与一次函数》教学设计

教学目标

1.知识与能力目标

(1)二元一次方程和一次函数的关系。

(2)二元一次方程组的图象解法。

(3)通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组的图象解法。同时培养学生初步的数形结合的意识和能力。

2.情感态度价值观目标

通过学生的自主探索,提示出方程和图象之间的对应关系,加强新旧知识的联系,培养学生的创新意识,激发了学生学习数学的兴趣,使学生体验数学活动充满探索与创造。

教材分析

前面已经分别学习了一次函数和二元一次方程组,这节课研究二元一次方程组(数)和一次函数(形)的关系,是这两章知识的综合运用。强化了部分与整体的内在联系,知识与知识的内在联系,并为今后解析几何的学习奠定基础。

教学重点

1、二元一次方程和一次函数的关系。

2、能根据一次函数的图象求二元一次方程组的近似解。

教学难点

方程和函数之间的对应关系即数形结合的意识和能力。

教学方法

学生操作------自主探索的方法

学生通过自己操作和思考,结合新旧知识的联系,自主探索出方程与图象之间的对应关系,以引入二元一次方程组的图象解法,同时也建立了“数”----二元一次方程组和“形”----函数的图象(直线)之间的对应关系,培养了学生数形结合的意识和能力。

教学过程

一、故事引入

迪卡儿的故事------蜘蛛给予的启示

十七世纪法国数学家迪卡儿有一次生病卧床,他看见屋顶 ……此处隐藏4745个字……的数量关系列出方程组。

【本章难点】列方程组解应用性的实际问题。

【学习本章应注意的问题】

在复习解一元一次方程时,明确一元一次方程化简变形的原理,类比学习二元一次方程组、三元一次方程组的解法,同时在学习二元一次方程组、三元一次方程组的解法时,要认真体会消元转化的思想原理,在学习用方程组解决突际问题时,要积极探究,多多思考,正确设未知数,列出恰当的方程组,从而解决实际问题。

中考透视

在考查基础知识、基本能力的。题目中,单独知识点考查类题目及多知识点综合考查类题目经常出现,在实际应用题及开放题中大量出现。所以在学习本章内容的过程中一定要结合其他相应的知识与方法,本章是中考的重要考点之一,围绕简单的二元一次方程组的解法命题,能根据具体问题的数量关系列出二元一次方程组,体会方程是描述现实世界的一个有效模型,并根据具体问题的实际意义用观察、体验等手段检验结果是否合理。考试题型以选择题、填空题、应用题、开放题以及综合题为主,高、中、低档难度的题目均有出现,占4~7分。

知识网络结构图

专题总结及应用

一、知识性专题

专题1 运用某些概念列方程求解

【专题解读】在学习过程中,我们常常会遇到二元一次方程的未知数的指数是一个字母或关于字母的代数式,让我们求字母的值,这时巧用定义,可简便地解决这类问题

例1 若 =0,是关于x,y的二元一次方程,则a=_______,b=_______.

分析 依题意,得 解得

答案:

【解题策略】准确地掌握二元一次方程的定义是解此题的关键。

专题2 列方程组解决实际问题

【专题解读】方程组是描述现实世界的有效数学模型,在日常生活、工农业生产、城市规划及国防领域都有广泛的应用,列二元一次方程组的关键是寻找相等关系,寻找相等关系应以下两方面入手;(1)仔细审题,寻找关键词语;(2)采用画图、列表等方法挖掘相等关系。

例2 一项工程甲单独做需12天完成,乙单独做需18天完成,计划甲先做若干后离去,再由乙完成,实际上甲只做了计划时间的一半因事离去,然后由乙单独承担,而乙完成任务的时间恰好是计划时间的2倍,则原计划甲、乙各做多少天?

分析 由甲、乙单独完成所需的时间可以看出甲、乙两人的工作效率,设总工作量为1,则甲每天完成 ,乙每天完成 .

解:设原计划甲做x天,乙做y天,则有

解这个方程组,得

答:原计划甲做8天,乙做6天。

【解题策略】若总工作量没有具体给出,可以设总工作量为单位1,然后由时间算出工作效率,最后利用工作量=工作效率工作时间列出方程。

二、规律方法专题

专题3 反复运用加减法解方程组

【专题解读】反复运用加减法可使系数较大的方程组转化成系数较小的方程组,达到简化计算的目的。

例3 解方程组

分析 当方程组中未知数的系数和常数项较大时,注意观察其特点,不要盲目地利用加减法或代入法进行消元,可利用反复相加或相减得到系数较小的方程组,再求解。

解:由①-②,得x-y=1,③

由①+②,得x+y=5,④

将③④联立,得

解得 即原方程组的解为

【解题策略】此方程组属于 型,其中| - |=k|a-b|, + =m|a+b|,k,m为整数。因此这样的方程组通过相加和相减可得到 型方程组,显然后一个方程组容易求解。

专题4 整体代入法解方程组

【专题解读】结合方程组的形式加以分析,对于用一般代入法和加减法求解比较繁琐的方程组,灵活灵用整体代入法解题更加简单。

例4 解方程组

分析 此方程组中,每个方程都缺少一个未知数,且所缺少的未知数又都不相同,每个未知数的系数都是1,这样的方程组若一一消元很麻烦,可考虑整体相加、整体代入的方法。

解:①+②+③+④,得3(x+y+z+m)=51,

即x+y+z+m=17,⑤

⑤-①,得m=9,⑤-②,得z=5.

⑤-③,得y=3,⑤-④,得x=0.

所以原方程组的解为

专题5 巧解连比型多元方程组

【专题解读】连比型多元方程组通常采用设辅助未知数的方法来求解。

例5 解方程组

解:设 ,

则x+y=2k,t+x=3k,y+t=4k,

三式相加,得x+y+t= ,

将x+y+t= 代入②,得 =27,

所以k=6,所以

②-⑤,得x=3,②-④,得y=9,②-③,得t=15.

所以原方程组的解为

三、思想方法专题

专题6 转化思想

【专题解读】 m.niubb.net对于直接解答有难度或较陌生的题型,可以根据条件,将其转化成易于解答或比较常见的题型。

例6 二元一次方程x+y=7的非负整数解有 ( )

A.6个

B.7个

C.8个

D.无数个

分析 将原方程化为y=7-x,因为是非负整数解,所以x只能取0,1,2,3,4,5,6,7,与之对应的y为7,6,5,4,3,2,1,0,所以共有8个非负整数解。故选C.

【解题策略】对二元一次方程求解时,往往需要用含有一个未知数的代数式表示出另一个未知数,从而将求方程的解的问题转化为求代数式的值的问题。

专题7 消元思想

【专题解读】 将未知数的个数由多化少,逐一解决的思想即为消元思想。

例7 解方程组

分析 解三元一次方程组可类比解二元一次方程组的代入法和加减法,关键是消元,把三元变为二元,再化二元为一元,进而求解。

解法1:由③得z=2x+2y-3.④

把④代入①,得3x+4y+2x+2y-3=14,

即5x+6y=17.⑤

把④代入②,得x+5y+2(2x+2y-3)=17,

即5x+9y=23.⑥

由⑤⑥组成二元一次方程组 解得

把x=1,y=2代入④,得z=3.

所以原方程组的解为

解法2:由①+③,得5x+6y=17.⑦

由②+③2,得5x+9y=23.⑧

同解法1可求得原方程组的解为

解法3:由②+③-①,得3y=6,所以y=2.

把y=2分别代入①和③,得 解得

所以原方程组的解为

【解题策略】消元是解方程组的基本思想,是将复杂问题简单化的一种化归思想,其目的

是将多元的方程组逐步转化为一元的方程,即三元 二元 一元。

你也可以在搜索更多本站小编为你整理的其他数学教案-二元一次方程与一次函数(精品多篇)范文。

《数学教案-二元一次方程与一次函数(精品多篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式